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Introduction

A number of widely-accepted definitions of formative assessment are based on three key instructional processes: (1) establishing where learners are in their learning, (2) where they are going, and (3) how to get there. It is therefore not surprising that there is increasing agreement that a clear articulation of learning progressions—an agreed view of “what it is that gets better when someone gets better at something”—is helpful, and perhaps essential, for effective formative assessment. However, learning progressions are rarely independent of curricular sequencing. One student will learn different things, and in a different sequence, from other students in the same classroom, and of course, in many areas, there is little or no agreement about the sequence in which particular elements in the curriculum ought to be taught. This paper attempts to clarify the nature of learning progressions, and proposes a way in which teachers might collaborate to produce learning progressions that would usefully describe the progress of their students, thus assisting the teachers in providing helpful guidance about future steps in learning.
Learning hierarchies and learning progressions
In his 1968 Presidential Address to the meeting of Division 15 of the American Psychological Association, Robert Gagné reflected on the meaning of the term “learning hierarchy,” which he had used some year earlier to refer to “a set of specified intellectual capabilities having, according to theoretical considerations, an ordered relationship to each other.” (Gagné, 1968 p. 2) However, he was clear that such learning hierarchies did not represent the only, or even the best sequence for instruction:
A learning hierarchy, then, in the present state of our knowledge, cannot represent a unique or most efficient route for any given learner. Instead, what it represents is the most probable expectation of greatest positive transfer for an entire sample of learners concerning whom we know nothing more than what specifically relevant skills they start with. (Gagné, 1968 p. 3)

From the way this conclusion is framed, it seems as if Gagné hoped that in time, our knowledge might have developed to a state where it was possible to determine what the most efficient route for any given learner might be, but more than forty years on, the goal seems as far off as ever.
Over the last five years, there has been a significant increase in interest in the idea of learning progressions (see Heritage, 2009 for a useful summary of work in this area), and while many different definitions of learning progressions have been proposed, none of them appear to differ materially from the idea of a learning hierarchy proposed by Gagné, and for this reason, the terms learning hierarchy and learning progression will be used interchangeably in this paper.
Some learning hierarchies do seem to be inevitable. In mathematics, for example, it seems inconceivable that someone could master multiplication before addition. It might be possible to define multiplication in some other way than as repeated addition, but it is hard to imagine how one could prevent a child from discovering addition before they reached the level of maturity needed to understand an abstract definition of multiplication. A learning hierarchy of this kind could therefore be seen as natural.
Other hierarchies seem natural, because of their familiarity, but are not. Multiplication is taught before division because facility at multiplication is a pre-requisite for carrying out division computations. However, division appears to be conceptually easier for students to grasp than multiplication (Brown, 1988). At a more advanced level, in teaching calculus, differentiation is taught before integration, because it is computationally more straightforward, although conceptually, the idea of finding the area under a curve (integration) is easier to grasp than the idea of the gradient of a curve at a point (differentiation). A computationally based curriculum (as tends to be found in most countries) would therefore place multiplication before division, and differentiation before integration, but in a conceptually based curriculum, the order might well be reversed.

So although learning hierarchies may not be natural, they can still be widespread, coherent, and acceptable. In their work on learning progressions in early number, Denvir and Brown found that there were strong hierarchical relationships in the order in which students acquired mathematics (although these will, of course, represent the sequence in which they have been taught these skills). They identified 47 skills involved in learning about early number (see Appendix 1) and assessed the extent to which 41 students had achieved each of these skills through individual interviews. Rank ordering the skills in terms of overall facility, and the students by number of skills demonstrated, produced the S-P table (Sato, 1975) shown in Figure 1. From this figure, Denvir and Brown proposed that seven different levels of achievement could be hypothesized to underlie student performance on these skills. The skills involved at each level are shown in Table 1.

Table 1: Skills involved in each of the seven levels identified in Figure 1

	Level
	Skills

	1
	36, 42, 43

	2
	31, 41

	3
	27, 28, 29, 30, 32, 35, 37, 38, 39, 40, 44

	4
	11, 13, 14, 16, 18, 19, 21, 22, 23

	5
	1, 8, 9, 10, 17, 24, 25, 26, 34 

	6
	2, 5, 7, 12, 15, 20, 33, 46

	7
	3, 4, 6, 45, 47


Each of these seven levels is hierarchical to the extent that each student who had succeeded at two-thirds of the skills at a particular level would have succeeded at two-thirds of the skills at a lower level (Denvir & Brown, 1986a). Of particular interest is skill 20 (Uses counting back/up/down strategy for 'take away'). This skill is not demonstrated by a significant number of high-achieving students, even though it is used by a number of students with much lower achievement. Denvir and Brown note that few children chose to use this strategy, but they note that it is not possible to infer whether students were, in fact able to do this, since the assessment focused on the choices students made to solve the problem, and any problem that can be solved by counting back can also be solved by counting on. A different form of assessment, focusing on the students’ perceptions rather than their choice of strategy may have produced a very different outcome.
Figure 1: S-P table for 41 students and 47 problems (Denvir & Brown, 1986a)
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Figure 2: Descriptive framework for early number skills (Denvir & Brown, 1986a)
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 Denvir and Brown then developed a descriptive framework that required both a logical and an empirical rationale. The logical rationale required that there should be a clear argument as to why one skill is prerequisite for another, and the empirical rationale that almost all students who show mastery of a skill show mastery of the pre-requisite skills. The resulting descriptive framework is shown in Figure 2 (the numbered circles correspond to skills in Appendix 1).

In Figure 2, an arrow from one skill to another indicates that the former is a prerequisite for the latter. For example, skill 1 (Models two digit addition with regrouping using 'base ten' apparatus) is a pre-requisite for skill 2 (Mentally carries out two digit take away with regrouping). This is empirically the case, from the data collected by Denvir and Brown, and also logically reasonable: if students cannot perform addition with re-grouping, it seems unlikely that they can perform subtraction with re-grouping. In other cases, skills appear to be related even though there was no clear hierarchical relationship. For example, skill 14 (Models two digit addition without regrouping using 'base ten' apparatus), seems to be quite closely related to skill 23 (Counts in 10s and 1s to enumerate a collection grouped in 10s and 1s but there is no clear hierarchical relationship.
At a more fine-grained level, it is interesting to note that there are differences between countries in the sequence in which students are taught how to find the areas of triangles and quadrilaterals. For example, in the Common Core State Standards, now being adopted by many jurisdictions in the US, it is proposed that students learn how to calculate the area of rectangles in third grade, the areas of shapes that can be decomposed into rectangles in fourth grade, and areas of triangles and parallelograms in sixth grade. Specifically, in sixth grade students should “find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles” (Common Core State Standards Initiative, 2010 p. 30).
Teachers reading such a list of requirements could hardly be faulted for assuming that students should first be taught how to find the areas of right triangles, then other triangles, and then parallelograms and trapezoids, and this is the sequence of instruction found in many US middle-school math textbooks. The problem with such an approach is that one has to choose one’s triangles carefully. It is straightforward to justify to middle school students that the area of a right triangle is half the product of the base and height, and this method can easily be extended to any acute-angled triangle (by showing that the area of the triangle is half the area of the smallest rectangle into which it fits). However, the same method does not work for an obtuse-angled triangle where one knows only the length of one of the two shorter sides and the perpendicular height from that side.

For this reason, in Japan, it is routine to teach students to find the area of a parallelogram before finding the area of a triangle. It is straightforward to show that any two congruent triangles can be put together to form a parallelogram, so this method is quite general.

Of course, teaching the area of a parallelogram before the area of a triangle brings in its own challenges, and so a careful study would need to be made of different approaches, but the fact that there are multiple, equally coherent approaches to curricular sequences means that Gagné’s aspiration is unlikely ever to be satisfied.
Another difficulty that arises in devising curricular sequences is that no matter how precisely educational objectives are framed, they necessarily admit a range of interpretations (Popham, 1994). Even in mathematics, the proportion of students who can satisfy apparently precise objectives depends significantly on the items that are used to interpret those objectives. For example, one study found that around 75% of 14 year olds could “Compare two fractions to identify the larger” for “typical” fractions such as ¾ and ⅘, and around 95% could do so for fractions with equal denominators (e.g., ⅝ and ⅞). However, for fractions with unequal denominators and equal numerators (e.g., ⅜ and ⅗) the success rate can be below 20% (Hart, 1980; Hodgen, Küchemann, Brown, & Coe, 2009).
This is a significant issue, because the level of granularity needed by teachers to effectively use learning hierarchies in their own work is generally at a far finer level than those used in educational objectives. The first national curriculum for England and Wales specified achievement for students in mathematics and science with respectively 296 and 407 objectives, but work with teachers suggested that each objective covered at about two weeks of learning for typical students. Learning progressions that covered teachers day-to-day activities would therefore appear need to contain literally thousands of elements.
One way round this is to operationalize learning progressions not in terms of learning objectives but in terms of tasks or activities successfully completed. The Secondary Mathematics Individualised Learning Experiment (SMILE), which began in London in the early 1970s, developed, over a thirty year period, a bank of over 2,000 workcards, worksheets and other learning resources. Although the activities varied greatly in their length, students would typically complete a set of ten of these tasks, chosen by the teacher, every two weeks, and then complete a short test on the each of the ten activities. One significant feature of the SMILE scheme was that no attempt was made to determine any learning progression at the outset. The activities were numbered sequentially as they were written, and placed into the “SMILE network” as it was called, where, in the opinion of the teachers who had trialed the material with the students, it fitted best (see SMILE, 2001 for a sample network; an extract of a network is shown in Appendix 2). For ease of organization, and as an aid to monitoring student progress, the cards were allocated to one of ten arbitrary levels (average fifth graders would typically start at level 3, and progress by around half a level per year). Every year, a team of teachers would meet to discuss whether any changes needed to be made to the network, particularly in terms of in which topic strand, and at which level a card should be placed. One activity (card 0791, entitled “A millionaire”) asked whether a millionaire in the United States was as wealthy as a millionaire in England, how much an Italian millionaire was worth (at this time one British pound was worth around 1700 Italian lire) and how much more money a French millionaire would need to be a millionaire in England. This activity was originally placed at level 4, but was found to be far more difficult than other cards at this level, and in subsequent years was moved to level 5, and then level 6. A skill that the teachers had thought should be easy turned out to be far more difficult for their students than they had imagined.
Examples like these suggest that to be useful, learning progressions need to be embedded in the day-to-day work of teachers, and grounded in the materials they actually use in their classrooms. While it might be attractive to have curriculum “experts” devise learning progression at a state, or even national level, it seems likely that the fruits of such an approach would be seen as irrelevant to most teachers. The stance adopted in this paper, therefore, is that to be of maximum use to practitioners, learning progressions will have to be developed and validated locally, taking into account the specific curriculum in place, the sequence in which students are taught particular material, and the resources, such as textbooks, that they have available.

Learning progressions: practical proposals
Supporting teachers in the development of learning progressions faces a particular challenge in the United States due to the way teachers are assigned to classes. In most developed countries, a teacher may teach fifth grade, sixth grade, seventh grade and eighth grade classes in the course of a single day. While this does have the disadvantage that teachers are required to prepare four or five different lessons each day, the advantage is that the relationship between materials taught in different grades can be seen much more easily by the teacher. In contrast, in the U.S., teachers are more likely to be assigned four or five classes in the same grade, so that there is a greater emphasis on covering the material within a grade, and less focus on how that relates to material covered in earlier and later grades. One consequence of this is that in many middle schools, one teacher will teach all the fifth grade math classes, and so for meaningful collaboration, the development of learning progressions will need to be a joint enterprise across several schools in a district. Obviously, where many schools in a state use the same textbooks, then there is the possibility of development at a wider scale, but for the remainder of this paper, we assume that the teachers developing learning progressions are middle school mathematics teachers working in different schools near enough to each other to allow them to meet together regularly.
The approach to the development of learning progressions proposed here builds on the work of Hart (1981) and Denvir and Brown (1986) in requiring that learning progressions must have both an empirical and a logical basis.  Progressions must have an empirical basis, in that later items in the learning progression must be more difficult than, and must also subsume, earlier items. In other words, there should be few instances where students demonstrate competence at a particular point in the learning progression without also being able to demonstrate competence at all earlier levels of the progression. In addition, however, a learning progression should also have a logical basis. The teachers involved in developing the learning progressions should be able to articulate a theoretical rationale for why earlier elements in the learning progression are required for later items.

Our procedure for the development of a learning progression is as follows. A group of teachers will identify one substantive skill or concept from the state standards for their subject and at the grade they teach. They will then identify a set of pre-requisite elements in the two preceding grades, and elements in the two subsequent grades for which the focal element is a pre-requisite. The five elements would then form a hypothesized learning progression.

The group will then construct a thirty-item test that incorporates items explicitly addressing each of the five elements of the standards selected. The first six items in the test will address the earliest of the five grades, the next six the next grade, the next six will address the focal grade, and so on. The teachers would then administer the assessment to one class of students in the focal grade. If possible, they would also seek to administer the same test to students in the next two grades as well.
Item scores for each student will then be entered into a spreadsheet, with students as rows, and item scores as columns, and the results will then be analyzed using the “Student-Problem” or S-P technique (Sato, 1975; McArthur, 1987) by sorting the rows of the spreadsheet by total number correct for each student, and then sorting the columns in order of item facility (as was done by Denvir & Brown). A sample of such a spreadsheet is provided in Appendix 3 (note that in the example in Appendix 3 rows represent students and columns represent items, which is the opposite of Figure 1, but experience suggests that this format is easier for teachers to comprehend, since it resembles class rosters).
To assist in the analysis of the S-P table, two curves are drawn on the table that show the extent to which students, and items, form a Guttman scale (Guttman, 1944). The student-curve, or S-curve (shown in black on the table in Appendix 3) is the line that marks the boundary between items answered correctly and items answered incorrectly on the assumption that students scale (in other words, on the assumption that a student who answers n items correctly answers the easiest n items correctly). The problem-curve or P-curve (shown in red in Appendix 3) is based on the assumption that items scale—it shows which items will be answered correctly on the assumption that if the item is answered correctly by n students, it will be the highest performing n students who do so. For each student, the number of ones to the right of the S-curve (which by definition is equal to the number of zeroes  to the left of the S-curve) provides an indication of the extent to which that student’s response departs from what might be expected (although it should be noted that the number of such disparities will be smaller for low and high achieving students than for other students). Similarly, the number of zeroes above the P-curve (or ones below it) indicates for each item the extent to which the item is answered as might be expected from students’ total scores.
Teachers will then be invited to analyze the S-P table by responding to the following questions:
· Are there items that appear not to fit the overall pattern (as was the case for item 20 in Figure 1)? In other words are there items that are answered correctly by low-achieving students and incorrectly by high-achieving students (see for example, item 17 in Appendix 3).
· For any such “failures to scale” identified, are they the result of inappropriate operationalization of the relevant elements of standards, or are the elements themselves inappropriate, or incorrectly placed, or might a different instructional sequence be appropriate?

· Are there students who do not appear to fit the overall pattern, so that they are answering difficult items correctly but easy items incorrectly (see, for example, student 8 in Appendix 3)?

The teachers would then develop a learning progression by examining the extent to which the items from the different grades function as expected. For example, the first six items in the test whose outcomes are shown in Appendix 3 were intended to relate to the earliest of the five grades. All but one of these items were answered correctly by two thirds of the students. For the next grade (one below the focal grade), the picture is much more complex. One of the items (item 11) is one of the easiest on the whole test, and another (item 7) is one of the most difficult, and the other four items appear to be as difficult as those relating to the next grade. There are at least three reasons why this might be. The items included might not adequately represent the element for this grade, the element should not be a part of this learning progression, or the teaching in the previous grade may have missed out important aspects of the development of this element. Four of the items relating to the focal grade (items 13 through 18) do appear to function as expected, although item 16 was much too easy, and as noted above, item 17 does not appear to be closely related to the other items.
By looking carefully at the items, the standards that they are intended to represent, and the performance of students on these items, the teachers would then be invited to develop a simple learning progression based the five elements. The five elements may, indeed form a simple hierarchy, or a more complex picture may emerge. Items may be modified, rejected, or used to assess a different element, and the sequencing of the elements themselves may be amended. Most importantly, the teachers will use this information to plan how, and in what sequence, they will teach this material next time, and the whole cycle can be repeated. Where evidence from higher grade classes is available, this can be used to extend the learning progression upward, to provide guidance on extension material for higher-achieving students in the focal grade.
Conclusion

In this paper, we have argued that the development of learning progressions needs to be carried out locally, since learning progressions need to be integrated into teachers’ daily practices to be of greatest benefit. Building on the work of Hart and Denvir and Brown, we suggest that learning progressions require both an empirical and a logical basis and have proposed a protocol for generating test item data, and for the analysis of the data, that can support teachers in developing and refining learning progressions. Specifically, the use of the S-P (student-problem) table allows teachers to explore the extent to which students and items scale. By restricting ourselves to tools that are available in every school (state standards, test items, spreadsheets) we hope that the ideas presented here will be useful to teachers in clarifying where students are in their learning, where they are going, and how to help them get there.
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Appendix 1

Number skills identified in Denvir and Brown (1987a):

	1
	Models two digit addition with regrouping using 'base ten' apparatus 

	2
	Mentally carries out two digit take away with regrouping 

	3
	Mentally carries out two digit take away without regrouping 

	4
	Models two digit ‘take away with regrouping using base ten apparatus

	5
	Uses multiplication facts to solve a 'lots of' word problem 

	6
	Uses multiplication facts to solve a 'sharing' word problem 

	7
	Mentally carries out two digit addition with regrouping 

	8
	Mentally carries out two digit addition without regrouping 

	9
	'Knows answer' when taking ten away from a 2-digit number 

	10
	'Knows answer' when adding ten to a 2-digit number 

	11
	'Knows answer' when adding units to a decade number 

	12
	Uses derived facts for addition 

	13
	Models two digit ‘take away’ without regrouping using ‘base ten’ apparatus

	14
	Models two digit addition without regrouping using 'base ten' apparatus 

	15
	Uses repeated addition or repeated subtraction for a 'sharing' word problem 

	16
	Uses repeated addition for a 'lots of' word problem 

	17
	Knows number bonds (not just the 'doubles') 

	18
	Solves 'compare (more) compared set unknown' word problem 

	19
	Solves 'compare (more) difference unknown' word problem 

	20
	Uses counting back/up/down strategy for 'take away' 

	21
	Counts in 2s and 1s to enumerate a collection grouped in 2s and 1s 

	22
	Counts in 5s and 1s to enumerate a collection grouped in 5s and 1s 

	23
	Counts in 10s and 1s to enumerate a collection grouped in 10s and 1s 

	24
	Can repeat the number sequence for counting in 10s from a non-decade two digit number

	25
	Can repeat the number sequence for counting backwards in 10s from a non-decade

	26
	Interpolates between decade numbers on a number line

	27
	Orders a selection of non-sequential two-digit numerals 

	28
	Appreciates commutativity of addition for sums of the form 1 + n 

	29
	Uses a counting-on strategy for addition 

	30
	Reads a selection of non-sequential two-digit numerals 

	31
	Repeats numbers in correct sequence to 99 

	32
	Repeats numbers in correct sequence for counting in 2s, 5s and 10s 

	33
	Bundles objects to make a new group of ten in order to facilitate enumeration of a collection which is partly grouped in 10s and 1s 

	34
	Makes quantitative comparison between two collections which are grouped

	35
	Appreciates structure of grouped collections

	36
	Compares collections and states whether equal 

	37
	Uses counting on strategy when provoked

	38
	Solves sharing problems by direct physical modeling 

	39
	Solves 'lots of problem by direct physical modeling

	40
	Knows numbers backwards from 20 

	41
	Knows numbers backwards from 10 

	42
	Can say numbers in correct sequence to 20, can solve addition and take away by direct physical modeling

	43
	Makes 1: 1 correspondence

	44
	Appreciates conservation of number 

	45
	Appreciates concept of class inclusion, without any hint or help

	46
	Partly appreciates concept of class inclusion 

	47
	Perceives ‘compare (more) difference unknown’ word problem as subtraction


Appendix 2: Extract from SMILE network
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Appendix 3: Sample S-P table for 30-item test
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